

Revue Congolaise des Sciences & Technologies

ISSN: 2959-202X (Online) http://www.csnrdc.net/

Les impacts environnementaux des éruptions volcaniques dans une zone à faible taux d'exploitation technologique : cas de la province du Nord-Kivu en RD Congo

[The environnements impacts of eruptions volcanics in an era by the poor exploitation of current technological: case of province of the North Kivu in DR Congo]

Zana Lambadi Aimé^{1*}, Mukala Kalambaie Alphonse Claude¹, Manzuma Mpukuta Bienvenu¹, Lumpungu Lutumba Kevin¹, Mabiala Ma Diambu Georges Christian¹, Mpia Ntab Rem Jean Armand¹, Tondozi Keto Franck², Zana Ndontoni André² et Therrien René³

¹Centre de Recherche en Géophysique (CRG), Kinshasa, République démocratique du Congo ²Université de Kinshasa, Faculté des Sciences, Département de Physique, Unité de Géophysique, Kinshasa, République démocratique du Congo ³Université Laval, Département Géologique, Unité de Géophysique, Québec, Canada.

Résumé

Le volcanisme est l'un des phénomènes naturels terrestres dont l'impact dans l'environnement est très remarquable. Rappelons que le volcanisme de la zone du Virunga, dans la province du Nord-Kivu en RD Congo trouve son origine dans le mécanisme de formation des crêtes médio-océaniques serpentant au milieu des océans Atlantique et Indien avec une extension dans la partie orientale du continent africain.

Par ailleurs, le volcanisme du Virunga est particulier en ce qui concerne sa concentration de grands édifices volcaniques sur une zone assez réduite, de fréquences élevées des épisodes éruptives et activités quasi-permanente dans les lacs de laves. La particularité du volcanisme du Virunga génère, plus que pour les autres volcans, une gamme plus diversifiée d'impacts environnementaux.

La mise en évidence de ces impacts nous a conduit à formuler quelques mesures en amont de ces éruptions dans le but d'en atténuer les conséquences afin d'amener les populations locales à s'adapter à vivre avec les volcans.

Mots clés: Impacts environnementaux, volcanisme, volcan, Virunga, Nord Kivu.

Abstract

The purpose of this study is to analyze the prevalence; the impact on performance and the stress-generating problems among Volcanism is one of the terrestrial phenomena naturel whose impact on the environment of our planet is more remarkable. Let us recall that volcanism in the Virunga area, in the province of North Kivu in DR Congo, has its origin in the mechanism of formation of mid-oceanic ridges meandering in the middle of the Atlantic and Indian Oceans with an extension in the eastern part of the African continent.

Virunga volcanism is peculiar in three aspects: concentration of large volcanic edifices on a fairly small area; high frequency of eruptive episodes and quasi-permanent lava lake activity.

The peculiarity of Virunga volcanism must generate, more than for other volcanoes, a more diversified range of environmental impacts that we have identified in a non-exhaustive way below, following the lack of field investigations.

The identification of these impacts has led us to formulate some measures unstream of these enurgious in order to mitigate the

The identification of these impacts has led us to formulate some measures upstream of these eruptions in order to mitigate the consequences of these eruptions and to encourage local populations to adapt to living with volcanoes.

Keywords: Environnemental impacts, vocalnism, volcanoes, Virunga, North Kivu.

*Auteur correspondant: Mukala Kalambaie Alphonse Claude, (<u>alphonsemukala37@gmail.com</u>). Tél.: (+243) 81 65 75 298 Reçu le 22/03/2023; Révisé le 28/04/2023; Accepté le 26/05/2023 https://doi.org/10.59228/rcst.023.v2.i1.30

Copyright: ©2023 Zana et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

1. Introduction

L'examen de la dynamique de notre planète, la Terre telle qu'illustrée par la distribution des tremblements de terre et tout particulièrement par leurs épicentres montre l'existence de deux grandes zones de manifestation de cette dynamique. Il s'agit de la zone des crêtes médianes océaniques qui serpente au milieu des océans atlantique et Indien ainsi que les contours de l'océan Pacifique tel qu'illustré sur la figure 1 (Ngindu, 2009).

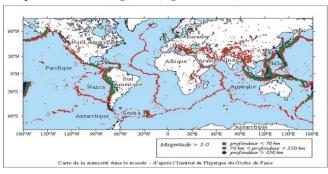


Figure 1. Carte de distribution des épicentres Source: Ngindu (2009)

La première zone, celle qui se situe dans les océans Atlantique et Indien est dite zone d'accrétion ou de régénération de la croute terrestre. Selon les géologues et géophysiciens, dans cette zone le magma interne effectue une ascension, après fusion, vers les couches superficielles de l'écorce terrestre pour donner naissance aux éruptions volcaniques. Du reste, les volcans de composition basaltiques sont majoritairement situés dans cette zone (Zana & Wafula, 2020).

Sur la figure 1, l'on constate que dans l'océan Indien, la ligne des crêtes médio-océanique pénètre dans le golfe d'Aden et la mer Rouge et s'étend dans l'Est du continent africain. Dans cette partie continentale, elle crée un fossé tectonique communément appelé Rift Est-africain. Cette structure s'y divise en deux branches: la branche principale traverse l'Ethiopie, la Somalie, le Kenya, la Tanzanie jusqu'au canal du Mozambique. La seconde branche court du Sud de la Tanzanie et forme la guirlande des lacs à savoir: les lacs Rukwa, Tanganyika, Kivu, Edouard, Albert et Georges à l'Ouest de l'Ouganda (Roussel & Hirsch, 2017).

De manière générale, dans les zones d'accrétions dont fait partie l'Afrique de l'Est et donc le Nord-Kivu, le magma liquide se forme à la base de la croute terrestre dans la couche de transition entre le manteau et la croute, couche dite

asthénosphère, sous l'effet de la chaleur venant du manteau inférieur par convection thermique, puis monte vers la surface et donne naissance au volcanisme (Decket & Decker, 1989).

La distribution des volcans récents indique que beaucoup de volcans sont dans cette zone. La grande partie des magmas des volcans de ces zones sont de composition basaltique et à éruptions effusives. Le volcanisme de l'Afrique de l'Est en général et ceux du Kivu en particulier font partie de cette catégorie. La distribution du volcanisme en Afrique de l'Est est illustrée dans la figure 2 (Bourdier, 1994).

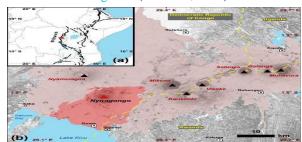


Figure 2. La zone de Virunga et ses volcans Source : Bourdier (1994)

Le volcanisme est l'un des phénomènes naturels les plus étonnants qui se produisent dans l'atmosphère terrestre. Des centaines de sites ont été le théâtre de tels événements même si peu peuvent encore être observés ici et là (Bourdier, 1994).

La structure d'un volcan est en elle-même un spectacle merveilleux tandis que l'éruption volcanique, en particulier l'éruption de laves basaltiques n'est rien d'autre qu'un mélange de peur chaleurs, d'explosions des laves d'émerveillement pour les êtres humains par les fontaines à feu pittoresques, les fontaines de feu colorées, etc. Le volcanisme a fourni par ailleurs à la province du Kivu en particulier des terres fertiles grâce à la composition chimique des centres et laves riches en éléments nutritifs pour les végétaux permettant ainsi une agriculture prolifique pendant des plusieurs générations (Tedesco et al., 2010).

La région des Virunga, dans l'Est de la République Démocratique du Congo présente un intérêt particulier en raison de son volcanisme. Ici, les volcans ont produit une topographie merveilleuse comprenant des lacs de cratère, des collines géométriques variables et de l'eau gazeuse dans le lac Kivu. Mais le phénomène volcanique le plus étonnant dans la province du Nord-Kivu est la présence des lacs de laves permanents actifs dans les cratères centraux des volcans Nyiragongo et Nyamulagira.

Ils constituent des sites d'émerveillement pour l'homme notamment à cause de la source de si grande énergie dégagée sans relâche (Yalire et al., 2009).

Le volcanisme de la zone de Virunga est caractérisé par un magma très sous-saturé en silice, ultra alcalin, riche en Fer et en Magnésium dont les premières manifestations ont démarré il y a 11 millions d'années (Roussel & Hirsch, 2017). Aujourd'hui, ce volcanisme est centré sur les deux édifices que sont le Nyiragongo et le Nyamulagira. Ils font partie des édifices de Rift intra-plaque, parmi les plus actifs de la planète. Le Nyamulagira a eu trente séquences éruptives entre 1901 et 2014 (Zana & Wafula, 2020) tandis que le Nyiragongo est demeuré quasi éruptif pendant près d'un siècle.

Le Nyamulagira est le volcan le plus actif d'Afrique. Son cratère central est situé à 1,52 ° de latitude Sud, 29, 25 ° de longitude Est et culmine à 3 058 m au-dessus du niveau des océans. Les flancs du Nyamulagira sont à pentes s'élevant graduellement qui font de lui un volcan bouclier. C'est en quelque sorte, un cône tronqué laissant une petite caldera de 2,3 km sur 2 km dont les parois s'élèvent en moyenne à 100 m de hauteur. Cette caldera ellemême abrite un petit cratère dit « pit-cratère » relativement plus actif que le grand cratère (figure 3). Le cône du Nyamulagira a un volume de l'ordre de 500 km3 tandis que ses coulées de laves couvrent une superficie de l'ordre de 1 500 km² (Cuoco et al., 2013).

Figure 3. Pit-cratère du Nyamulagira Source : Cuoco et al. (2013)

Des éruptions ont eu lieu dans la caldeira à travers les nombreux cônes de cendres. Les fissures s'étendent jusqu'aux flancs du cône principal. Entre 1921 et 1938, le cratère central du Nyamulagira a abrité un lac des laves disparus lors de l'éruption de 1938 à 1940.

Le volcan Nyiragongo est situé à 18 km environ du centre de la ville de Goma. Cette agglomération de plus d'un million d'habitants est située sur la rive Nord du lac Kivu et Est de Goma, le chef-lieu de la Province du Nord-Kivu. Le cône du Nyiragongo occupe une superficie de l'ordre de 2 060 km². La ville de Goma jouxte la ville de Gisenyi au Rwanda avec une population de plus de 100 000 habitants (Michel, 2011).

Le Nyiragongo est un stratovolcan dont le sommet est un cratère large de 1 300 m de diamètre et profond de 800m au lendemain de l'éruption fissurée du 10 janvier 1977. La coupe synthétique de ce cône est schématisée sur la figure 4 (Zana & Wafula, 2020).

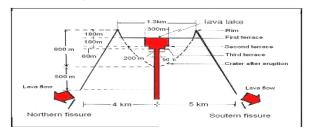


Figure 4. Pit-cratère du Nyamulagira Source: Zana & Wafula (2020)

Le cône du volcan Nyiragongo présente des flancs en pente raide typiques d'un volcan composite. En effet, deux stratovolcans plus anciens, Baruta (2 800 m) et Shaheru (3 200 m) sont partiellement chevauchés par le Nyiragongo au Nord et au Sud. Environ 100 petits cônes s'élèvent le long de fissures radiales au Sud et à l'Ouest de Shaheru ainsi que le long d'une direction Nord-Est – Sud Ouest jusqu'au lac Kivu (Bourdier, 1994).

De plus, la province du Nord-Kivu possède sur la rive Nord du lac Kivu une concentration exceptionnelle de grands volcans dont deux, le Nyiragongo et le Nyamulagira sont encore actifs. Cette concentration des volcans ne se trouve nulle part ailleurs sur la surface de notre planète. Cette zone volcanique est appelée le Virunga et s'étend environ sur 80 km d'Est en Ouest et à peine 40 km du Nord au Sud.

Les volcans de cette zone sont caractérisés par une activité éruptive de type effusif. Généralement, les laves sont émises le long des fissures et s'écoulent doucement sans explosions. Il s'agit d'éruptions dites de type hawaïen. Le volcan Nyiragongo possède un lac de laves permanent actif depuis plus d'un siècle tandis que le volcan Nyamulagira a vu son lac des laves disparaitre en 1938 et réapparaitre en 2014 (Balagizi et al., 2017).

A cause de la pente de la zone entourant le volcan et de la fluidité des laves, les coulées de laves du volcan Nyiragongo peuvent parcourir de longue distance avec une vitesse moyenne de 30 km/h (Tazieff, 1975). Elles ont un pouvoir destructeur énorme. En effet, en janvier 2002 par exemple, ces coulées ont causé la destruction de 30% des infrastructures dans la ville de Goma et des pertes en vies humaines. Ainsi, le volcan Nyiragongo figure parmi les volcans présentant les plus grands risques pour les populations locales tandis que les lacs de laves induisent une grande variété d'impacts environnementaux.

La prévention des catastrophes volcaniques est devenue un sujet de préoccupation quotidienne pour les gouvernements. Ainsi, notre étude vise deux objectifs, à savoir:

- L'objectif scientifique qui est tout simplement de voir les interactions entre les éléments émis lors des éruptions volcaniques avec ceux présents dans les sols et dans l'atmosphère;
- L'objectif environnemental est le point focal de cette étude. En effet, il s'agit de mettre en évidence les effets sur l'environnement des éléments issus des éruptions. Nous estimons ainsi aboutir, par la suite, à la mise en évidence de ces impacts afin de suggérer des mesures appropriées pour leur réduction dans la perspective de développement durable des communautés locales.

2. Matériel et méthode

Pour notre étude, nous avons utilisé la méthode inductive partant des données recueillies par l'observatoire volcanologique de Goma. Les équipements utilisés étaient les suivants: les sismomètres et les distance mètres qui surveillent et fournissent au quotidien les données des paramètres physiques des volcans du Kivu. De ces informations et celles puisées dans la documentation spécifique nous permettent de tirer les éléments susceptibles d'induire des impacts environnementaux. En effet, ces données de seconde main avaient pour objectif la prédiction des éruptions tandis notre étude sera consacrée aux effets environnementaux de ces phénomènes en prenant en compte de manière spécifique: la sécurité, la santé et l'économie des populations locales ainsi que de leurs biens.

3. Résultats

3.1. Volcans du Virunga

Les volcans du Virunga se classent en deux groupes: les volcans éteints (Mikeno, Karisimbi, Sabinio, Visoke, Muhavura, Mgahinga) et les volcans actifs (Nyiragongo et Nyamulagira). Ce sont des volcans inter plaques localisés dans le système du Rift Est Africain.

La localisation de ses édifices volcaniques n'est pas aléatoire. En effet, les principaux édifices volcaniques seraient survenus le long des failles principales associées à la mise en place du fossé tectonique (figure 5). Une telle concentration des grands édifices volcaniques est bien supérieure à celle des îles Hawaii aux USA dont le Virunga rivalise la fréquence d'éruptions et la majesté des fontaines de laves. A l'instant de l'extrusion, la température du magma est de l'ordre de 1 100 °C. Il faut signaler que la province du Nord-Kivu possède une aire volcanique à la frontière RD Congo-Ouganda, zone dite de Toro-Ankoro qui avoisine la grande montagne du Ruwenzori (Halbwachs et al., 2002).

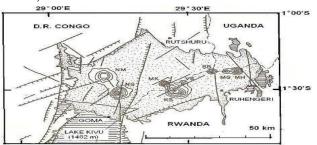


Figure 5. Carte géologique des Virunga : principaux édifices volcaniques

Légende: NM: Nyamulagira; NG: Nyiragongo; MK: Mikeno; KS: Karisimbi; VS: Visoke; SB: Sabinyo; MG Gahinga; MH: Muhavura et Principales failles

Source: Pouclet (1975)

La documentation consultée indique que les éruptions des deux volcans Nyamulagira et Nyiragongo sont essentiellement de type effusif, aussi appelé de type hawaiien. C'est-à-dire, similaire à ceux des volcans d'Hawaï aux USA. Les laves s'écoulent à la suite de l'ouverture d'une fissure. De plus, la grande fluidité des magmas entraine l'extension des laves sur des distances relativement longues. La fluidité des magmas serait due à leur grande teneur en silice. L'éjection des blocks solides est localisée dans les environs immédiats du point d'éruption (Pouclet, 1975).

3.2. Lacs du Virunga

La zone de Virunga y compris le lac Kivu semble avoir subi une surrection exceptionnelle à une altitude de plus de 1 400 m au –dessus du niveau des océans. Ainsi le lac Kivu est le lac de plus haute altitude après le lac Titihaha au Pérou. Les autres lacs voisins du lac Kivu sont à des altitudes plus basses: lac Edouard (117 m) et lac Tanganyika (870 m). La surrection du Virunga en plus de ses huit grands édifices volcaniques alignés dans la direction E-W, coupe les lacs Edouard et Albert du bassin du fleuve Congo, et les rattache de celui du fleuve Nil. Cette surrection du Virunga donne naissance à une

Zana cran

zone montagneuse générant un climat le plus clément de notre planète en fraicheur et pluviométrie. La température annuelle moyenne à Goma est de l'ordre de 25 °C. Les effets topographiques du volcanisme associés aux variations de la composition chimique des sols ont conduit à une fertilité exceptionnelle des sols ainsi qu'à un climat parmi les plus doux de notre planète. Ces deux facteurs ont eu comme conséquence une forte concentration des populations humaines. Il est à signaler au passage que la densité des populations dans le Nord-Kivu est plus de 100 fois plus élevée que dans toutes les autres parties de la RD Congo (Degens et al., 1973).

Le lac Kivu, perché à 1 460 m d'altitude, est un lac méromictique formé à la fin du Pléistocène alors que la chaîne volcanique des Virunga, elle, subissait sa mise en place. Le lac Kivu est situé dans la branche occidentale du Système des Rifts Est-Africain et bordé au Nord par les coulées de laves du Nyiragongo et du Nyamulagira, à l'Est par les collines rwandaises, à l'Ouest par la chaîne de Mitumba et s'écoule au Sud vers le lac Tanganyika par la rivière Ruzizi. Le lac Kivu a une profondeur maximale de 485 m (Beadle, 1981), contient environ 580 km³ d'eau sur une surface de 2 370 km² et a un bassin versant total de 5 097 km² à l'exclusion de la zone lacustre (Degens et al., 1973). Le temps de séjour de l'eau est estimé à 100 ans au-dessus de la chimiocline majeure (Beadle, 1981) et 800 à 1 000 ans sous la chimiocline majeure s'étendant de ±255 à 262 m. Les eaux profondes anoxiques contiennent $300 \text{ km}^3 \text{ de CO}_2$, $60 \text{ km}^3 \text{ de CH}_4$ à 0° C et à une pression 1 atm. Les concentrations de ces gaz augmentent avec la profondeur (figure 6). D'autres gaz (H₂S, azote et argon) sont présents à de faibles concentrations (Schmid & Wüest, 2012).

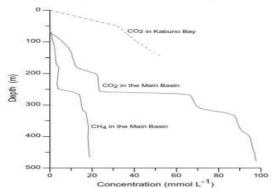


Figure 6. Variation de la concentration du CO_2 et CH_4 en fonction de la profondeur

Source: Schmid & Wüest (2012)

Le lac Kivu se compose d'un bassin principal et de quatre sous bassin (Balagizi et al., 2017). La figure 10 illustre bien la cartographie du lac Kivu. Sur base de cette stratification causée par la salinité, la température et les concentrations de gaz dissous (Degens et al. 1973), on peut distinguer deux couches principales dans le bassin principal du lac Kivu (mesurant une profondeur maximale de 485 m): le mixolimnion et le monimolimnion (Schmid et al., 2005).

Le « mixolimnion », également appelé épilimnion (0 à 60-65 m de profondeur), est la strate supérieure mélangée par le vent et les variations saisonnières et donc oxygénée. Elle a également été appelée « biozone » parce que l'activité biologique du lac Kivu est limitée à cette zone, à l'exception des processus microbiens anaérobies comme méthanogènes. Le monimolimnion est la strate inférieure (de ±65 m jusqu'au fond du lac) est en permanence stratifiée, anoxique et ne se mélange jamais (Schmid & Wüest, 2012). Situé au Nord-Ouest du lac, la baie de Kabuno est partiellement isolée du lac principal et contient plus de CO₂ dissous que dans les autres bassins (Tassi et al., 2009) ainsi qu'une très faible quantité de CH₄ (Borges et al., 2011).

3.3. Le danger que représente le lac Kivu

Le lac Kivu, compte tenu des différents gaz qu'il renferme, pourrait devenir l'éruption lacustre la plus désastreuse qui ait jamais eu lieu dans le temps historique, en particulier, si l'on considère les millions de personnes habitant la zone du lac. L'éruption du Nyamulagira fut une séquence moyenne en durée et en volume de laves émises. Cependant la pression d'extrusion de magma était telle que les concentrées volcaniques avaient atteint la stratosphère. Ceci montre que les éruptions volcaniques du Virunga bien que réputées effusives et non explosives ont un impact réel sur l'atmosphère et même sur la haute atmosphère. Il y a donc lieu de leur accorder une attention particulière face à la navigation aérienne. La coulée des laves vers le lac Kivu constitue un autre danger pour la région (Bobrowski et al., 2016).

3.4. Effets des éruptions volcaniques sur l'atmosphère

Le panache éruptif du Nyamulagira (figure 7) est souvent dispersé par le vent sur une large zone

où elle peut dégrader la qualité de l'air et influencer le climat. Par exemple, l'éruption du 27 novembre au 12 décembre 2006 a produit un vaste panache qui a parcouru de longues distances, traversant le Centre et le Nord-Est de l'Afrique (la RDC, la République du Congo, République centrafricaine, Cameroun, Tchad), l'Arabie saoudite et finalement a atteint l'Inde (Balagizi et al., 2017).

Figure 7. Les panaches permanents des deux volcans sont poussés vers l'ouest par les vents dominants

Source: Balagizi et al. (2017)

Les Mazuku "vent diabolique" ou "lieux maléfiques" selon le dialecte local Kinyabwisha sont riches en CO2 et les endroits où l'oxygène est épuisé et où les personnes et les animaux meurent par asphyxie. Les mazuku correspondent typiquement à des vents de gaz secs, généralement dans des dépressions ou le long de la coulée de lave. Le CO2 ascendant atteint la surface (Vaselli et al, 2003) et s'accumule jusqu'aux niveaux de dépressions mal ventilées, car la densité spécifique du gaz CO2 est ±1,5 fois supérieure à celle de l'air. Dans la plupart des mazuku, les concentrations de CO2 sont faible pendant la journée et augmente jusqu'à des niveaux mortels pendant la nuit, augmentant jusqu'à 80 %, comme le révèlent les mesures en continu effectuées dans deux sites Bulengo et Buhimba. Les Mazuku sont donc plus dangereux la nuit, au petit matin ou le soir, ou après des précipitations en raison de la baisse des températures ambiantes et de la vitesse du vent (Vaselli et al., 2003).

Les Mazuku sont facilement reconnaissables par la présence de taches noires sur les rochers, les roseaux, papyrus, de fougères et la présence d'animaux morts (insectes, oiseaux, lézards, rats ou serpents). Des éléphants, lions, hippopotames, buffles, hyènes, etc. morts, ont également été trouvés dans le mazuku du parc national des Virunga. Les Mazuku du Virunga sont les plus dangereuses en

raison de leur proximité de régions plus peuplées. (Verschuren, 1965).

3.5. Effets des éruptions volcaniques sur l'écologie terrestre

Les longues coulées de laves du volcan Nyamulagira anéantissent fréquemment d'immenses zones forestières entrainant la disparition d'espèces végétales et animales parfois endémiques, c'est-à-dire, spécifiques à cette région. Il faut rappeler que le Virunga est la plus ancienne réserve naturelle de la RD Congo inscrite au Patrimoine de l'UNESCO. En examinant la liste des coulées récentes, l'on peut sans peine imaginer que de nombreuses espèces végétales et animales ont été anéanties lors de ces séquences éruptives (Kasereka et al., 2017).

Pour les populations locales, les coulées constituent un risque aux conséquences incalculables incluant pertes en vies humaines (600 morts en 1977 et 2000 en 2002), destruction des infrastructures, ruines économiques. Ces effets ont été vécus en janvier 1977 et en janvier 2002. Les tremblements de terre ressentis (magnitude 3,5 - 4,5) ont été une source considérable de stress pour les populations locales (Kasereka et al., 2017).

L'hydrographie de la région de Goma est dominée par le lac Kivu, le lac Vert, la baie de Saké et les ruisseaux situés à l'extrême Ouest de Goma. La rivière la plus proche de Goma en RDC se trouve à l'Ouest, près de l'agglomération de Saké (Vaselli et al, 2003).

3.6. Effets des éruptions volcaniques sur l'écologie aquatique

L'approvisionnement permanent de cette cité en eau potable est encore un grand défi pour la province du Nord-Kivu, particulièrement pour cette zone où le volcanisme détériore considérablement la qualité de l'eau. Par ailleurs, l'eau de pluie a un pH faible et contient parfois des quantités de fluor supérieures aux normes proposées par l'Organisation Mondiale de la santé (OMS) pour l'eau potable (au maximum 1,5 mg/l, soit 6 mg/jour) (Fawell et al., 2006). Dans le Virunga, les gaz volcaniques atteignent également la surface par les émissions du sol et des fractures et se dissolvent dans les aquifères. Les pluies acides fréquentes et les températures élevées accélèrent l'altération des roches et contribuent à la contamination des eaux souterraines et de surface (Balagizi et al., 2015). L'eau du robinet à Goma est prise du bassin principal du lac Kivu, qui contient un excès de fluorure. Ainsi, l'activité volcanique a de graves répercussions sur la composition des eaux de surface et des eaux souterraines.

286 Zana et al.

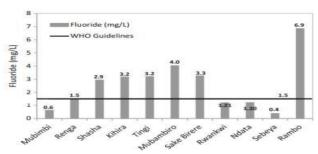


Figure 7. Les panaches permanents des deux volcans sont poussés vers l'ouest par les vents dominants

Source: Balagizi et al. (2017)

4. Discussion

La zone de Virunga, située dans l'Est de la R.D. Congo, présente un intérêt particulier en raison de son volcanisme. Ceci se produit dans le Rift Est africain offrant dans son entourage des failles, des fissures et des fractures. Mais le phénomène volcanique le plus étonnant dans le Kivu est la présence des lacs de laves permanents actifs dans les cratères centraux des volcans Nyiragongo et Nyamulagira. constituent des Ils sites d'émerveillements pour l'homme notamment à cause de la source d'une si grande énergie dégagée sans relâche. Les coulées des laves et la séismicité de la région présentent les plus grands risques pour les populations locales tandis que les éruptions volcaniques induisent une grande variété d'impacts environnementaux. La localisation des édifices volcaniques n'est pas aléatoire. En effet, les principaux édifices volcaniques seraient survenus le long des failles principales associées au fossé tectonique (Bourdier, 1994). La pression d'extrusion de magma est telle que les cendres volcaniques peuvent atteindre la stratosphère. Ceci montre que les éruptions volcaniques du Virunga bien que réputées effusives et non explosives ont un impact réel sur l'atmosphère et même sur la haute atmosphère.

Un des impacts majeurs des éruptions rencontrées dans la région Virunga sont les effets topographiques. En effet, la Zone de Virunga y compris le lac Kivu ont subi une surrection exceptionnelle à une altitude de plus de 1 400 m audessus du niveau de la mer coupant ainsi les lacs Edouard et Albert du bassin du fleuve Congo et les rattacher à celui du fleuve Nil. La surrection du Virunga donne une zone montagneuse au climat parmi les plus clément et doux de notre planète en

fraicheurs et en pluviométrie. Avec une température moyenne annuelle de 25°C, les effets topographiques du volcanisme associés aux variations de la composition chimiques du sol lors de l'éruption volcanique ont conduit à une fertilité exceptionnelle des sols. Ces deux facteurs ont eu comme conséquence une forte concentration des populations aux alentours de la zone de Virunga. Une autre conséquence est que dans les dépressions proche des zones des fortes concentrations locales, des vents secs appelés Mazuku, riches en CO2 asphyxient les personnes et les animaux (Bobrowski et al., 2016).

5. Conclusion

Les volcans Nyiragongo et Nyamulagira restent le danger permanent pour la zone de Virunga précisément dans la ville de Goma. En effet, une future éruption volcanique à l'intérieur de la ville et / ou dans les profondeurs du lac Kivu pourrait entraîner une perte de vie importante et la dégradation de l'écosystème local. Il s'agit là d'une des crises volcaniques les plus importantes au monde. Par ailleurs, le volcanisme de cette zone se localise dans le Rift Est Africain et connait une séismicité particulière causant d'énormes dégâts.

L'inventaire succinct et non exhaustif auquel nous venons de procéder grâce aux données nous fournies par les chercheurs de l'Observatoire Volcanologique de Goma et au travers de la littérature a montré à suffisance que les impacts environnementaux des éruptions volcaniques sont bien réels et ce, avec des conséquences sur la nature et sur les êtres biologiques.

Ces impacts portent d'abord sur écosystèmes locaux comprenant la terre ferme, les milieux lacustres, les rivières, l'atmosphère, les populations locales et leurs biens de manière globale créant un potentiel de risque aux conséquences incalculables. Ce risque à lui seul mériterait la mise en place d'un projet mondial de surveillance et d'exhaustion des gaz dissous dans les eaux profondes du lac Kivu. Un tel événement entrainerait un holocauste le pire de tous les temps puisque plus de cinq millions de personnes vivent dans les voisinages immédiats du lac Kivu. Il faut signaler au passage que des procédés de génération d'électricité avec le méthane comme combustible sont en exploitation tandis que des techniques de production d'hydrocarbures par transformation de CO₂ sont en voie de mise en place par exemple dans les laboratoires des universités d'Espagne. Le CO₂ nuisible du lac Kivu pourrait devenir une richesse naturelle. Si l'opportunité scientifique nous était offerte ainsi que les facilités de déplacement, cette étude mériterait d'être approfondie. La ville de Goma est un pôle économique majeur, non seulement pour la RD Congo, mais aussi pour toute la région des Grands Lacs de l'Afrique de l'Est. Cette étude pourrait jouer le rôle d'alarme pour la communauté internationale ainsi que pour les décideurs locaux.

Références bibliographiques

- Balagizi, M.C., Yalire, M.M., Kasereka, M., Kinja, A., Kies, A. & Tedesco, D. (2011). An overview of geohazards inside Goma City and surrounding villages, North Kivu/the DRC Congo [Conference]. European science foundation conference, San Feliu de Guixols.
- Balagizi, M.C., Darchambeau, F., Yalire, M., Bouillon, S., Borges, V.A. (2015). River geochemistry, chemical weathering, and atmospheric CO₂ consumption rates in the Virunga Volcanic Province (East Africa). *Geochem Geophys Geosyst*, 16(8), 2637–2660. https://doi.org/10.1002/2015GC005999
- Balagizi M.C., (2016). Identifying hydrological pathways in the north basin of Lake Kivu using stable isotope ratios of meteoric recharge and surface water. In *EGU General Assembly Conference Abstracts* (pp. EPSC2016-9720).
- Balagizi M.C., Kasereka, M.M., Cuoco, E. & Liotta, M (2017). Rain-plume interactions at Nyiragongo and Nyamulagira volcanoes and associated rainwater hazards, East Africa. *Appl. Geochem.*, 81,76–89.
- Beadle, L.C. (1981). *The inland waters of tropical Africa* (2nd edition). Longman, London.
- Bobrowski, N., Giuffrida, G.B., Yalire, M., Lübcke, P., Arellano, S., Balagizi, C., Calabrese, S., Galle, B. & Tedesco, D. (2016). Multicomponent gas emission measurements of the active lava lake of Nyiragongo, DR Congo. *Journal of African Earth Sciences*, 134, 856-865.
 - https://doi.org/10.1016/j.jafrearsci.2016.07.0
- Borges, A.V., Abril, G., Delille, B., Descy, J.P. & Darchambeau, F. (2011). Diffusive methane emissions to the atmosphere from Lake Kivu Eastern Africa. *J Geophys Res*, 116(3), 1–7. https://doi.org/10.1029/2011JG001673.
- Bourdier, J.L. (1994). *Le Volcanisme*. Orléans, Editions BRGM.

- Carn SA, 2002, Eruptive and passive degassing of sulfur dioxide at Nyiragongo volcano (D.R. Congo): Acta Vulcanol 14(1-2):1-11
- Cuoco, E., Tedesco, D., Poreda, R.J., Williams, J.C., De Francesco, S., Balagizi, M.C. & Darrah, T.H. (2013). Impact of volcanic plume emissions on rainwater chemistry during the January 2010 Nyamulagira eruptive event: implications for essential potable water resources. *J Hazard*, 2012: Mater ,244–245:570–584. https://doi.org/10.1016/j.jhazmat.2012
- Decket, R. & Decker, B. (1989). Volcanoes. New York, W.H. Freeman and Company.
- Degens, E.T., Von Herzen, R.P, Wong, H.K, Deuser, W.G. & Jannasch, H.W. (1973). Lake Kivu: structure. *Nature* 348:201. https://doi.org/10.1038/348201a0
- Deuser, W.G., Degens, E.T. & Harvey, G.R. (1973). Methane in Lake Kivu: new data bearing its origin. *Science*, 181, 51–54.
- Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, J. & Magara, Y. (2006). *Fluoride in drinking water*. London, IWA Publishing.
- Halbwachs, M., Tietze, K., Lorke, A. & Mudaheranwa, C. (2002). Investigations in Lake Kivu (east central Africa) after the Nyiragongo eruption of January 2002: Specific study of the impact of the sub-water lava inflow on the lake stability. Paris, Solidarité.
- Kasereka, M.M., Yalire, M.M., Minani, A.S., Samba, C.V., Bisusa, A.K., Kamate, E.K., Mashagiro, N., Sauswa, M. et Kavuke, J.K. (2017). Les risques liés aux mazuku dans la région de Goma, république démocratique du Congo (Rift Est-Africain). J. Water Environ. Sci., 1(2), 164–174
- Michel, D. (2011). Le Nyiragongo: volcan de tous les dangers et maîtrise des risques. *LAVE, revue de l'association de volcanologie européenne*, 153, 16-29.
- Ngindu, B.D. (2009). Mécanisme au foyer de Grands Séismes du Rift des Grands Lacs [Mémoire de DEA, Université Pédagogique Nationale, R.D. Congo].
- OMS. (2010). Glissement de terrain dans le village de Kibiriga, Zone de Santé de Karisimbi (Nord

Kivu) [Rapport de situation d'urgence].

- Pouclet, A. (1975). Activités du volcan Nyamuragira:Rift Ouest de l'Afrique Centrale, évaluation des volumes de matériaux émis.
- Roussel, B. & Hirsch, B. (Eds.). (2017). Le Rift estafricain: Une singularité plurielle. IRD éditions.

288 Zana et al.

- Schmid, M., Halbwachs, M., Wehrli, B. & Wüest, A. (2005). Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption. Geochem. Geophys. Geosyst. 6(7), 1–11. https://doi.org/10.1029/2004GC000892.
- Schmid, M. & Wüest, A. (2012). Stratification, mixing and transport processes in Lake Kivu. In J.P. Descy (Ed), *Lake Kivu: limnology and biogeochemistry of a tropical great lake*, (pp. 13–29). Berlin, Springer.
- Tassi, F., Vaselli, O., Tedesco, D., Montegrossi, G., Darrah, T., Cuoco, E., Mapendano, M.Y., Poreda, R., & Huertas, D.A. (2009). Water and gas chemistry at Lake Kivu (DRC): geochemical evidence of vertical and horizontal heterogeneities in a multibasin structure. *Geochem Geophys Geosyst*, 10(2), 1–22. https://doi.org/10. 1029/2008GC002191
- Tazieff. (1975). Nyiragongo: le volcan interdit. Paris, Editions Flammarion.
- Tedesco, D., Tassi, F., Vaselli, O., Poreda, R. J., Darrah, T., Cuoco, E., & Yalire, M. M. (2010). Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): Geodynamic and volcanological implications. *Journal of Geophysical Research: Solid Earth*, 115(B1). Doi:10.1029/2008JB006227
- Vaselli, O., Capaccioni, B., Tedesco, D., Tassi, F., Yalire, M.M. & Kasereka, M. (2003). The "Evil's Winds" (Mazukus) at Nyiragongo volcano (Democratic Republic of Congo). *Acta Vulcanol*, 14(1), 123–128
- Verschuren, J. (1965). Un facteur de mortalite' mal connu, l'asphyxie par gaz toxiques naturels au Parc National Albert, Congo. *La Terre et la Vie*, 3, 215–237.
- Yalire, M., Zaina, L., Baluku, B., Kasereka, M., Orlando, V. et Durieux, J. (2009). Etude de l'impact de l'activité actuelle du volcan Nyiragongo sur l'environnement de Goma en R. D. Congo. *Cahier du CERUKI, CRSN-Lwiro*, numéro spécial.
- Zana, N. & Wafula, M. (2020). The Virunga volcanoes in DR Congo.
