

NOTORIETE SCIENTIFIQUE, VISIBILITE DES CHERCHEURS ET RANKINGS

BASES & INDICATEURS BIBLIOMETRIQUES

Par

Prof. Damien S. Tshibangu, PhD

Plan de l'exposé

- > Introduction
- ➤ Bases et Indicateurs Bibliométriques et Rankings
- Faiblesses et Critiques
- **≻**Conclusion
- > Remerciements

Introduction (1)

Description Générale (a)

Evaluation et **classification** de revues scientifiques : grâce aux outils de la bibliométrie.

Selon différents critères:

- existence et la constitution d'un Comité de lecture
- nombre de citations par d'autres chercheurs
- prestige des auteurs et de la publication,

Introduction (2)

Description Générale (b)

Objectif:

- Distinction, impact ou l'influence de ces différents périodiques scientifiques dans R & D, contexte académique et pédagogique
- Mesurer le prestige ou la notoriété

Introduction (3)

Description Générale (c)

Systèmes de classification basés sur :

- Fréquence et
- Nombre de citations différentiels
- etc.

Introduction (4)

Description Générale (d)

Plrs pays : évaluation et classement des revues scientifiques = outils d'évaluation des différents acteurs de la recherche scientifique.

Exigence du chercheur:

Introduction (5)

Description Générale (e)

- cité dans des revues à fort facteur d'impact, conséquence :
- influence de son avancement professionnel
- † chances d'obtenir subventions de projets de recherche (soi-même, équipe).

Introduction (6)

Historique (a)

- Dès le XVII^e Siècle, la communauté scientifique s'organise avec les sociétés savantes.
- En 1665 : 1ères revues scientifiques:

Londres: Royal Society

Paris: Journal des savants

Introduction (7)

Historique (b)

- 1880 : Science (Revue prestigieuse).
- 19e-20es : progression des revues scientifiques (+rs domaines de compétence et de spécialisation).
- Entre 1926 et 1935 : 1ers travaux de bibliométrie (Alfred Lotka, Samuel Bradford et George Kingsley Zipf).

Introduction (8)

Historique (c)

1950, Derek John de Solla Price : utilisation des articles scientifiques comme indicateurs quantitatifs de la recherche scientifique.

En 1954 : Scientométrie et durant la même décennie, Eugene Garfield: idée d'utiliser les citations des articles.

Introduction (9)

Historique (d)

- 1960 : Institute for Scientific Information (ISI) par Garfield
- 1963 : l'ISI met en place le 'Science Citation Index' (SCI).
- En 1975 : ISI met en place le Journal Citation Reports (JCR): mesure de l'impact : articles et revues référencées par le WoS.

Introduction (10)

Historique (e)

 2000 : indexation ouvrages sciences humaines et sociales, effectuée par l'*European Index For The Humanities* (ERIH).

Introduction (11)

Historique (f)

- 2004 : Scopus (comparable à l'ISI).
- 2004 : Google Scholar apparaît sur Internet.
- Juste après : Publish or Perish : calcul des indicateurs pour évaluation chercheurs et revues.

Introduction (12)

Historique (g)

En 2009 : lancement de la Public Library of Science (PLoS) : libre accès avec plrs autres indicateurs alternatifs.

Introduction (13)

Quelques Définitions

Introduction (14)

Quelques Définitions (a)

- 1. Open Access: Libre accès
- 2. ISSN: International Standard Serial Number (Identifiant International des Publications en série): Code de 8 caractères: identifier supports imprimés ou électroniques (journaux, revues, magazines, etc.)
- Tous les pays pour les publications soumises au dépôt légal. ISSN: 2959-202X : obligation.

Introduction (15)

Quelques Définitions (b)

3. DOI: Digital Object Identifier (Identifiant numérique d'objet): chaîne de caractères univoque et pérenne conçue pour internet. Identification de ressources: numériques (film, rapport, des articles scientifiques, des personnes) ou tout autre type d'objet.

Invariant : gestion numérique à long terme de toute chose. DOI: 10.59229/rcst

Introduction (16)

Quelques Définitions (c)

ONG: 'International DOI Foundation': organe de gouvernance de ces agences d'enregistrement de DOI: Crossref, DataCite, mEDRA

Introduction (17)

Quelques Définitions (d)

4. Indexation et Base d'indexation

L'indexation d'une revue scientifique :

Références citées dans celle-ci = **analysées** et **répertoriées** dans une base d'indexation de revues scientifiques

Introduction (18)

Quelques Définitions (e)

- Une base d'indexation de revues scientifiques : plateforme web qui offre des données ou informations de la revue sur :
- nombre d'articles,
- nombre de citations,
- nombre de consultations, téléchargment
- facteur d'impact, h-index (indice-h).

Introduction (19)

Quelques Définitions (f)

La bibliométrie: l'application des mathématiques et des méthodes statistiques aux livres, articles et autres moyens de communication » (Beauvens, 1969).

Bases Bibliométriques -Plates Formes Scientifiques -Moteurs de Recherche

Bases Bibliométriques (1)

Elles permettent :

- Indexation
- Suivi du nombre et de la fréquence de citation des articles de différentes revues scientifiques.

Web of Science, Scopus et Google Scholar

Bases Bibliométriques (2)

1. Bases d'indexation revues spécialisées (a)

BIOSIS (Biological Abstracts), FSTA (Food Science and Technology Abstracts), Pubmed (Biomedical and life sciences), IEEE Xplore (Computer science, electrical engineering and electronics), Chemical Abstracts, Computer & Control Abstracts, Current Physics Index,

Bases Bibliométriques (3)

1. Bases d'indexation revues spécialisées (b)

 Electrical & Electronics Index, Energy Research, GeoRef (Geological Abstracts), International Aerospace Abstracts, Mathematical Reviews, MathSciNet , ZentalBlatt, Nuclear Science Abstracts, Physics Abstracts, World Aluminum Abstracts, Etc.

Bases Bibliométriques (4)

- 2. Bases d'indexation de toutes revues scientifiques accessibles sur le Web
- AJOL, DOAJ, DRJI, Index, EBSCO, Copernicus, WorldCat, Science Direct,
 Google Scholar, ResearchGate, Microsoft Academic Search, Wikipedia, etc.

Bases Bibliométriques (5)

La vérification de l'indexation d'une revue ?

- Web of science journal list pdf
- Scopus journal list pdf
- Google scholar journal list pdf
- Etc.

Bases Bibliométriques (6)

1. Web Of Science (WoS)

https://mjl.clarivate.com/help-center

Bases Bibliométriques (7)

1. Web Of Science (WoS) (a)

Base de données documentaires internationales, multidisciplinaire : toutes les activités de la Thomson Reuters Corporation : Editeur du Journal Citation Report et établit le Facteur impact.

Bases Bibliométriques (8)

1. Web Of Science (WoS) (b)

WoS: 3 grandes bases d'indexation des citations:

- Sciences fondamentales : Science Citation Index (SCI),
- Sociales: Social Sciences Citation
 Index (SSCI)
- Humaines et les arts : Arts and Humanities Citation Index (A & HCI).

Bases Bibliométriques (9)

1. Web Of Science (WoS) (c)

En 2016 (WoS): indexe 12 000 revues publiées depuis 1900, dont 11 459 étaient dotées d'un Fl et enregistrées dans le Journal Citation Reports (JCR).

Bases Bibliométriques (10)

1. Web Of Science (WoS) (d)

Bases Régionales de WoS (1)

Depuis 2008: Chinese Science Citation Database, en collaboration avec Chinese Academy of Sciences, fut la première base d'indexation dans une langue autre que l'anglais

Bases Bibliométriques (11)

1. Web Of Science (WoS) (e)

Bases Régionales (2)

- SciELO Citation Index 2013, (Brézil, Espagne, Portugal, Les Iles des Caraïbes, l'Afrique du Sud et 12 autres pays d'Amérique Latine).
- Korea Citation Index : 2014, avec une amélioration du National Research
 Foundation of Korea en 2015

Bases Bibliométriques (12)

Web Of Science (WoS) (f)
 Bases Régionales (3)

- Russian Science Citation Index: 2015
- . Arabic Regional Citation Index: 2020

Bases Bibliométriques (13)

2. Scopus (Elsevier)

https://www.elsevier.com/solutions/scopus/how-scopus-works/content/content-policy-and-selection

Bases Bibliométriques (14)

2. Scopus (a)

Scopus : base de données transdisciplinaire de résumés et de citations de publications scientifiques lancée par l'éditeur Elsevier (2004)

Scopus: 21 000 revues scientifiques.

Couverture ↑ par % au WoS des sciences humaines et sociales et des revues non anglophones.

Bases Bibliométriques (15)

2. Scopus (b)

- 1200 titres (open access),
- 3 millions de nouvelles références/an : articles scientifiques, publications industrielles, collections d'ouvrages, actes de conférence.

Bases Bibliométriques (16)

2. Scopus (c)

Scopus (Elsevier): deux sous-produits

- Scopus.com: interface web, permet d'analyser les citations d'une personne groupe article revue;
- SciVal : C'est un outil à l'usage des institutions.

Bases Bibliométriques (17)

2. Scopus (d)

Les principaux indicateurs bibliométriques

- SCImago Journal Rank (SJR)
- Eigenfactor.
- Source Normalized Per Paper (SNIP) et
- Impact Per Publication (IPP).

Bases Bibliométriques (18)

3. Google Scholar

Bases Bibliométriques (19)

3. Google Scholar

Par Google: 2004.

2016 : base bibliométrique gratuite, la plus importante en terme du nombre d'articles publiés et de revues citées.

Principaux indicateurs bibliométriques: H et G

Bases Bibliométriques (20)

- 4. Directory Of Open Access Journals (DOAJ)
- 5. African Journals Online (AJOL)
- 6. ResearchGate
- 7. Academia
- 8. Journal Citation Reports (JCP)
- 9. Etc.

Bases Bibliométriques (21)

Quelques critères de sélection pour une indexation

Bases Bibliométriques (22)

Qlq critères de sélection pour indexation (a)

On peut retenir les points suivants :

- Revue identifiée par un ISSN
- Revue à comité de lecture (processus d'évaluation décrit publiquement)
- Publication régulière

Bases Bibliométriques (23)

Qlq critères de sélection pour indexation (b)

- Contenu doit être "pertinent et lisible pour une audience internationale" (alphabet latin, titres et résumés en anglais
- Minimum deux ans d'historique de publication
- Etc.

Quelques Indicateurs Bibliométriques et Rankings

Indicateurs Bibliométriques et Rankings (1)

1. h-index

Indicateurs Bibliométriques et Rankings (2)

1. *h-index* (a)

L'indice *h* (indice de Hirsch ou *h*-index) proposé par Jorge Hirsch (2005) : indicateur de la production scientifique et de la visibilité des chercheurs.

Quantifier la productivité scientifique et l'impact d'un scientifique en fonction du niveau de citation de ses publications

Indicateurs Bibliométriques et Rankings (3)

1. *h-index* (b)

Appliqué : groupe des scientifiques (Département, Université, Pays).

Outil pour qualité relative des **physiciens théoriciens**.

Mesure étendue à tous les chercheurs publiant dans des revues à comité de lecture.

Indicateurs Bibliométriques et Rankings (4)

1. *h-index* (c)

Hirsch suggère pour les physiciens :

- 10-12 : Chercheur d'une Université renommée.
- 18 : poste de Professeur
- 15-20 : membre de la Société américaine de physique
- > à 45 : membre de l'Académie nationale des sciences

Indicateurs Bibliométriques et Rankings (5)

1. *h-index* (d)

World Scientist and University Rankings 2024

Université de Kinshasa

Pius T Mpiana

		In <u>Université de</u> <u>Kinshasa</u> (79)	In <u>Congo</u> (222)	In <u>Africa</u> (94,055)	World (1,443,075)
	Scores		Ra	ankings	
Total H	41	#1 🕠	#1 🔘	#865	#118,390
Last 6 year H	31	#1 🔘	#1 🔕	#953	#102,072
Last 6 year H / total H	0.756				
Total i10	134	#2	#2 🕗	#552	#63,120
Last 6 years i10	106	#2	#2 🔘	#496	#50,375
Last 6 years i10 / Total i10	0.791				
Total Citation	5,517	#2	#2 🔘	#1,383	#166,585
Last 6 years Citation	3,617	#2	#2 🕗	#1,241	#125,938
Last 6 years Citation / Total Citation	0.656				
Natural Sciences *		#1 (19) *	#1 () (26) *	#225 (9,909) *	#22,382 (170,093) *
Chemical Sciences *		#1 (14) *	#1 (14) *	#62 (3,255) *	#4,743 (38,782) *

www.adscientificindex.com

Indicateurs Bibliométriques et Rankings (6)

World Scientist and University Rankings 2024

Université de Kinshasa

Koto Te Nyiwa Ngbolua

		In <u>Université de</u> <u>Kinshasa</u> (79)	In <u>Congo</u> (222)	In <u>Africa</u> (94,055)	World (1,443,075)
	Scores		Ra	inkings	
Total H	37	#2	#2 🙆	#1,170	#144,701
Last 6 year H	26	#2	#2 🕗	#1,674	#153,954
Last 6 year H / total H	0.703				
Total i10	175	#1 🛈	#1 🔘	#288	#38,321
Last 6 years i10	133	#1 🛈	#1 🔘	#297	#32,293
Last 6 years i10 / Total i10	0.760				
Total Citation	6,010	#1 🛈	#1 🔘	#1,235	#152,955
Last 6 years Citation	3,913	#1 🕠	#1 🔘	#1,094	#114,507
Last 6 years Citation / Total Citation	0.651				
Natural Sciences *		#2 (19) *	#2 ② (26) *	#294 (9,909) *	#26,933 (170,093) *
Biological Science *		#1 () (2) *	#1 (0) (8) *	#79 (1,827) *	#4,713 (29,734) *

www.adscientificindex.com

Indicateurs Bibliométriques Lindov (f) et Rankings (7)

World Scientist and University Rankings 2024

Université de Kinshasa

Damien St Tshibangu

In <u>Université</u> In <u>Congo</u> In <u>Africa</u> <u>World</u> (1,443,075) <u>de Kinshasa</u> (222) (94,055)

		(79)			
	Scores		Ra	ankings	
Total H	33	#3	#4	#1,770	#189,525
Last 6 year H	22	#4	#4	#2,992	#234,836
Last 6 year H / total H	0.667				
Total i10	73	#3	#3 🔕	#1,768	#160,739
Last 6 years i10	57	#3	#3 💿	#1,756	#141,466
Last 6 years i10 / Total i10	0.781				
Total Citation	2,994	#3	#4	#3,106	#290,918
Last 6 years Citation	1,677	#3	#3 🔕	#3,577	#285,476
Last 6 years Citation / Total Citation	0.560				
Natural Sciences *		#3 (19) *	#3 🔘 (26) *	#423 (9,909) *	#34,790 (170,093) *
Chemical Sciences *		#2 (14) *	#2 ② (14) *	#150 (3,255) *	#7,654 (38,784) *

www.adscientificindex.com

Indicateurs Bibliométriques et Rankings (8)

1. *h-index* (g)

Un chercheur a un indice de h si un nombre h de ses publications ont été cités au moins h fois chacune (3 ans).

L'indice h reflète : nombre de publications et le nombre de citations par publication.

Indicateurs Bibliométriques et Rankings (9)

2. h5-index

Indicateurs Bibliométriques et Rankings (10)

2. h5-index (a)

h5-index: 5 ans,

h-index: 2 ou 3 ans.

S'applique au classement des revues et sont disponibles dans Google Scholar.

Indicateurs Bibliométriques et Rankings (12)

3. Impact Factor (IF)
ou
Facteur Impact (FI)

Indicateurs Bibliométriques et Rankings (13)

3. Facteur d'Impact (FI) ou Impact Factor (IF) (a)

Indicateur de notoriété de revues :

- Le plus utilisé : évaluer, classer les périodiques scientifiques.
- Conçu par Eugène Garfield, le fondateur de Institute for Scientific Information (ISI).
- Depuis 2016 : entreprise Clarivate qui gère le FI, publié dans le Journal Citation Reports (JCR).

Indicateurs Bibliométriques et Rankings (14)

3. Facteur d'Impact (FI) ou Impact Factor (IF) (b

Le FI d'une revue = nombre moyen de citations des articles de la revue, rapporté au nombre d'articles que publie la revue.

Calculé : 2 ans de publication, à partir de WoS.

Indicateurs Bibliométriques et Rankings (15)

- 3. Facteur d'Impact (FI) ou Impact Factor (IF) (c Ex: La revue X a publié :
- 60 en 2010 (N-2) + 65 en 2011(N-1)= 125 articles.

En 2012 (année N):

40 citations pour les articles de 2010 + 30 pour les articles de 2011 = 70 citations.
 FI 2012 Cahiers Agricultures = 70/125 = 0,565

Indicateurs Bibliométriques et Rankings (16)

3. Facteur d'Impact (FI) ou Impact Factor (IF) (d

En 2016, l'index de l'ISI recense environ 11 000 revues scientifiques.

FI: monopole

Puis prolifération d'indicateurs alternatifs ne fassent leur apparition.

Indicateurs Bibliométriques et Rankings (17) 3. Facteur d'Impact (FI) ou Impact Factor (IF) (e

Avantages de FI:

- L'avantage du FI
- Facilité d'usage,
- Facilement calculable,
- + de 15000 revues de + de 60 pays différents,
- Outil bibliométrique le + simple.

Indicateurs Bibliométriques et Rankings (18)

3. Facteur d'Impact (FI) ou Impact Factor (IF) (f

Utilisation du Fl

- En science: **Nature** et **Science** ont des FI = ± 40.
- En biomédicales : **The England Journal of Medecine** (FI : 79.3) et **The Lancet** (FI : 53.3).
- Revues de domaines spécialisés de haut niveau ont des FI < 5.

Indicateurs Bibliométriques et Rankings (20)

4. Eigenfactor

- Développé par Jevin West et Carl Bergstrom (Washington University).
- Similaire au FI, mais calculé sur 5 ans.
- Adéquat : Sciences humaines et les Sciences sociales (bcp de temps de publication et citation)

Indicateurs Bibliométriques et Rankings (21)

5. SCImago Journal Rank (2007)

SCImago Journal Rank (SJR indicator of Indicateur SJR)

- Mesure l'influence des revues académiques : 3
 ans.
- Initié par chercheurs de +rs universités espagnoles (2007).

Indicateurs Bibliométriques et Rankings (22)

6. ERIH (Eur. Reference Index for the Hum.)

En **sciences humaines**, en 2000 on attribue aux différentes revues un Fl appelé «*European Reference Index for the Humanities* » (ERIH).

Indicateurs Bibliométriques et Rankings (23)

Il existe d'autres mesures ou indicateurs alternatifs

Indicateurs Bibliométriques et Rankings (27)

Faiblesses et Critiques

Indicateurs Bibliométriques et Rankings (28)

Faiblesses et Critiques (a)

h-index

- 2020 Jorge Hirsch : « J'ai proposé le *h*-index, espérant qu'il serait une mesure objective d'accomplissement scientifique. Dans l'ensemble, cela est considéré comme étant le cas.
- Mais à présent, j'en suis venu à croire que le hindex peut aussi échouer spectaculairement et avoir de sévères conséquences négatives involontaires.

et Rankings (29) Faiblesses et Critiques (b)

- Augmentation artificielle de h-index par autocitation disproportionnée. Calculer un indice-h corrigé, tenant compte du ratio d'auto-citations est fastidieux; Web of Science ou Google Scholar ne permettent pas de le calculer.
- Publication scientifique : deux <u>indicateurs</u> <u>d'impacts</u> différents, selon la base de données utilisée.

Indicateurs Bibliométriques et Rankings (30)

Faiblesses et Critiques (c)

Facteur impact

Très critiqué

Deux ans : trop court et non significatif pour la recherche de pointe.

Indicateurs Bibliométriques et Rankings (31)

Faiblesses et Critiques (d)

Facteur impact

 Articles classiques sont cités fréquemment, même après plusieurs décennies.

FI sur 5 ans : pertinent

Indicateurs Bibliométriques et Rankings (32)

Faiblesses et Critiques (e)

Facteur impact

- Confusion: mesures de popularité, de prestige et d'impact réelles
- Prédominance des revues en anglais au détriment des revues publiées en d'autres langues = lacune

Indicateurs Bibliométriques et Rankings (33)

Faiblesses et Critiques (f)

Facteur impact

 Augmente avec le prestige de la revue, qui peut être artificiellement gonflé par une <u>politique</u> <u>éditoriale</u> adéquate et ses moyens en termes de <u>publicité</u>

Indicateurs Bibliométriques et Rankings (34)

Faiblesses et Critiques (g)

Facteur impact

- Citations non indexées par le WoS non considérées
- Publication de certains articles précis au début de l'année.

COMPANY SCIENTIFICUE HAND

Indicateurs Bibliométriques et Rankings (35)

Faiblesses et Critiques (h)

Facteur impact

Facteur Impact est manipulable.

Ex : 2008, un article du <u>Acta</u> <u>Crystallographica</u> comprenait la phrase : « Cet article peut servir comme une citation de littérature générale quand un des logiciels libres SHELX est utilisé pour déterminer la structure d'un cristal. »

Indicateurs Bibliométriques et Rankings (36)

Faiblesses et Critiques (i)

Facteur impact

Artcile: + de 6 600 citations et son FI:

- $2,051 \rightarrow 49,926$ de 2008 à 2009, soit plus que *Nature* (31,434) et *Science* (28,103)
- Editeurs forcent les chercheurs à l'auto-citation de leurs revues pour l'acceptation de publication de leurs articles :↑ FI.

Indicateurs Bibliométriques et Rankings (37)

Faiblesses et Critiques (j)

Facteur impact

 Chercheurs: augmentation du nombre de publications « <u>publier ou périr</u> » → pas de travaux scientifiquement intéressants.

Indicateurs Bibliométriques et Rankings (38)

Faiblesses et Critiques (k)

Facteur impact

En effet, pour les chercheurs :

 nombre de publications = déterminant carrière (promotions, salaire, continuité d'emploi).

Conclusion (1)

Prestige: chercheur, institution, revue, etc. passe par tous ces facteurs.

Bon chercheur doit publier et soit cité dans les revues à fort facteur d'impact.

Sa notoriété, son influence, son avancement professionnel, l'augmentation de ses chances d'obtenir des **subventions** pour lui-même, son équipe et ses projets de recherches en dépendent.

80

Conclusion (2)

Publish or perish

Merci

- MINRSIT
- SG
- CSN:
 - Président Professeur Pius Mpiana
 - Equipe CSN
- COGE CRGM
- Participants